Science Publications

Recent Publications

A peptide-based biological coating for enhanced corrosion resistance of titanium alloy biomaterials in chloride-containing fluids

Authors

Noah Muruve, Yuanchao Feng, Jaye Platnich, Daniel Hassett, Randall Irvin, Daniel Muruve, Frank Cheng

Details
Abstract

Titanium alloys are common materials in the manufacturing of dental and orthopedic implants. Although these materials exhibit excellent biocompatibility, corrosion in response to biological fluids can impact prosthesis performance and longevity. In this work, a PEGylated metal binding peptide (D-K122-4-PEG), derived from bacteria Pseudomonas aeruginosa, was applied on a titanium (Ti) alloy, and the corrosion resistance of the coated alloy specimen was investigated in simulated chloride-containing physiological fluids by electrochemical impedance spectroscopy and micro-electrochemical measurements, surface characterization, and biocompatibility testing. Compared to uncoated specimen, the D-K122-4-PEG-coated Ti alloy demonstrates decreased corrosion current density without affecting the natural passivity. Morphological ...

Peptide-based biocoatings for corrosion protection of stainless steel biomaterial in a chloride solution.

Authors

Muruve, Cheng YF, Feng Y, Liu T, Muruve DA, Hassett DJ, Irvin RT

Details
Abstract

In this work, PEGylated D-amino acid K122-4 peptide (D-K122-4-PEG), derived from the type IV pilin of Pseudomonas aeruginosa, coated on 304 stainless steel was investigated for its corrosion resistant properties in a sodium chloride solution by various electrochemical measurements, surface characterization and molecular dynamics simulation. As a comparison, stainless steel electrodes coated with non-PEGylated D-amino acid retroinverso peptide (RI-K122-4) and D-amino acid K122-4 peptide (D-K122-4) were used as control variables during electrochemical tests. It was found that the D-K122-4-PEG coating is able to protect the stainless steel from corrosion in the solution. The RI-K122-4 coating shows corrosion resistant property and should be investigated further, ...

A Putative ABC Transporter Permease is Necessary For Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa Under Aerobic, Anaerobic, Planktonic or Biofilm Conditions

Authors

Cameron McDaniel, Warunya Panmanee, Shengchang Su, Renuka Kapoor, Kevin Cox, Andrew Paul, Gee Lau, Seung-Hyun Ko, Joel Mortensen, Joseph S. Lam, Daniel Muruve and Daniel Hassett

Details

Pseudomonas aeruginosa (PA) is an important airway pathogen of cystic fibrosis and chronic obstructive disease patients. Multiply drug resistant PA is becoming increasing prevalent and new strategies are needed to combat such insidious organisms. We have previously shown that a mucoid, mucA22 mutant PA is exquisitely sensitive to acidified nitrite (A-NO2-, pH 6.5) at concentrations that are well tolerated in humans. Here, we used a transposon mutagenesis approach to identify PA mutants that are hypersensitive to A-NO2-. Among greater than 10,000 mutants screened, we focused on PA4455, in which the transposon was found to disrupt ...

Contact Arch Biopartners
Stay connected!

Subscribe for email updates

Get email alerts when news is published
Please check the options for Investor News and Press releases to receive customized email alerts.

Publications Archives